Огнезащитные вспучивающиеся покрытия

Важнейшим элементом системы пожарной безопасности зданий и сооружений является огнезащита строительных конструкций. Она должна обеспечивать повышение огнестойкости конструкций до необходимого уровня, снижение их пожарной опасности, предотвращение развития и распространения пламени. Выполнение этих требований снижает вероятность гибели людей и материальные потери от пожаров. Одним из наиболее эффективных и доступных способов придания огнестойкости различным материалам служит окраска их огнезащитными ЛКМ.

Главная цель различных способов огнезащиты строительных конструкций – максимально снизить скорость нагрева защищаемой поверхности, сохранив при этом на определенный период времени их прочностные характеристики. Так, металлические конструкции, быстро нагреваясь при пожаре, уже при 500 0С теряют несущую способность. Наглядной иллюстрацией недостаточной защиты несущих металлоконструкций является трагедия, произошедшая в Нью-Йорке 11 сентября 2001 года.

Для повышения пределов огнестойкости конструкций применяют различные материалы и способы защиты: бетонирование, оштукатуривание специальными составами, использование кирпичной кладки, негорючих листовых теплоизоляционных материалов и др.

 

 

В настоящее время среди огнезащитных материалов наиболее перспективны лакокрасочные покрытия вспучивающегося (интумесцентного) типа. Интумесцентная технология защиты изделий от горения является сравнительно новой и заключается во вспучивании и превращении в кокс поверхностного слоя материала, подверженного воздействию пламени. Образующийся при этом вспененный коксовый слой предохраняет в течение определенного времени защищаемую поверхность (или нижележащие слои) от воздействия пламени и высоких температур.

Целесообразность использования огнезащитных вспучивающихся покрытий (ОВП) обусловлена прежде всего тем, что они тонкослойны, при нагревании не выделяют токсичных веществ, обладают высокой огнезащитной эффективностью и могут быть нанесены на защищаемую поверхность различными механизированными методами. В обычных условиях эксплуатации эти покрытия похожи по внешнему виду на традиционные лакокрасочные покрытия и выполняют аналогичные защитно-декоративные функции. При воздействии высокой температуры толщина и объем вспучивающегося покрытия увеличиваются в десятки раз за счет образования негорючего и твердого вспененного слоя (кокса) с плотностью 3∙10-3 – 3∙10-2 г/см3 и коэффициентом теплопередачи, близкому к таковому для воздуха. Слой действует как физический барьер для подвода тепла от пламени к нижележащим слоям покрытия и защищаемой поверхности, уменьшая теплопередачу примерно в 100 раз.

ОВП широко применяются для повышения огнестойкости стальных, деревянных, бетонных, кирпичных строительных конструкций, воздуховодов, кабелей, кровли и других изделий. Требования к огнезащитным материалам, включая вспучивающиеся покрытия, предназначенным для нанесения на различные поверхности, изложены в следующих Нормах пожарной безопасности (НПБ):

- НПБ 251-98 «Огнезащитные составы и вещества для древесины и материалов на ее основе. Общие требования. Методы испытаний»;

- НПБ 236-97 «Огнезащитные составы для стальных конструкций. Метод определения огнезащитной эффективности»;

- НПБ 238-97 «Огнезащитные кабельные покрытия. Общие требования и методы испытаний».

Эффективное вспенивание данного вида покрытий достигается только при обязательном наличии в их составе ряда специальных компонентов, выполняющих определенные функции, а также оптимальном количественном соотношении между ними. Обычно по своим функциям основные компоненты ОВП подразделяют на следующие группы:

- пленкообразователи (например, стирол-акриловые и ПВА-дисперсии, эпоксидные и кремнийорганические смолы);

- карбонизирующиеся соединения – источники углерода (пентаэритрит, дипентаэритрит и др.);

- неорганические кислоты и их производные – фосфорная кислота, полифосфат аммония (ПФА) и др.;

- вспенивающие агенты – газообразователи, порофоры (меламин, мочевина и др.). Кроме того, в состав ОВП входят галогенсодержащие добавки (хлорпарафин и др.), некоторые пигменты и наполнители.

Вспенивание и коксообразование интумесцентных покрытий сопровождается различными физико-химическими процессами, протекающими, как правило, в определенной последовательности по мере нарастания температурного воздействия на композицию. Механизм вспучивания покрытий изучен недостаточно глубоко. Это связано с тем, что основные реакции, приводящие к получению защитного пенококсового слоя, протекают в области высоких температур (до 900 оС), что затрудняет моделирование указанных процессов. Кроме того, ОВП являются многокомпонентными композиционными материалами. Это предопределяет в свою очередь большое количество возможных взаимодействий между компонентами образовавшегося огнезащитного покрытия особенно при высоких температурах. При этом предсказать направление высокотемпературных реакций также достаточно сложно.

 

 

Огнезащитная эффективность покрытий вспучивающегося типа обусловлена различными факторами:

- эндотермическим отводом тепла, расходуемого на различные фазовые и химические превращения ингредиентов в процессе образования пенококсового слоя. Выделяющиеся при этом газообразные продукты, такие, как аммиак, углекислый газ, азот, пары воды, проходя через нагретые слои формирующегося пенококса, значительно охлаждают его, отводя тем самым значительную долю энергии;

- термическим сопротивлением образующегося пенококса, зависящим от его теплопроводности, термостабильности, толщины, строения, жесткости, кинетики и условий его получения;

- способностью отражения (поглощения) падающего теплового потока поверхностью образующегося пенококса. Вспененный кокс также ограничивает диффузию летучих продуктов деструкции полимера к пламени и, наоборот, кислорода воздуха к поверхности разлагающегося полимера. Увеличение выхода карбонизированных продуктов и толщины пенослоя уменьшает количество поступающих в зону горения летучих веществ, снижает интенсивность теплового потока к нижележащим слоям покрытия. Увеличение термостойкости кокса приводит к росту температуры его поверхности и способствует повышению затрат на нагрев. Морфология кокса влияет на его теплопроводность, проницаемость, способность к выгоранию и тлению.

Пенококсовый слой должен иметь высокую адгезию к защищаемой поверхности, которая при пожаре нагревается. В этом плане большое практическое значение имеют также противокоррозионные грунтовки, наносимые на подложку перед ее окраской огнезащитным ЛКМ.

Огнезащитная эффективность ОВП при нанесении на металл согласно НПБ 236-97 характеризуется временем (в минутах) от начала огневого испытания до достижения образцом стальной конструкции с огнезащитным покрытием критической температуры (500 0С). При этом тепловое воздействие на испытуемый образец осуществляется в стандартном температурном режиме пожара, характеризуемом следующей температурной зависимостью:

Т =  345 lg (8t +1)  +  Т0,

где Т – температура, соответствующая времени t, 0C;

Т0 – температура до начала теплового воздействия (принимают равной температуре окружающей среды), 0С;

t – время, исчисляемое от начала испытания, мин.

ЛКМ интумесцентного типа делятся на два основных вида: водо- и органоразбавляемые. Водоразбавляемые материалы не имеют запаха и зачастую более эффективны по огнезащитным свойствам. Лучшие ОВП, полученные на основе водно-дисперсионных (ВД) красок, имеют коэффициент вспучивания 40–50 и при толщине защитного слоя 1–1,5 мм обеспечивают четвертую группу огнезащиты по НПБ 236-97. Однако им присущ очень серьезный недостаток – высокая восприимчивость к воде и влаге воздуха, что обусловливает снижение огнезащитной эффективности из-за потери покрытием водорастворимых специальных компонентов. В свою очередь, органорастворимые ЛКМ образуют более водостойкие покрытия, могут наноситься на изделия в условиях повышенной влажности, допускают транспортировку и применение в зимнее время.

Образование вспучивающегося слоя с оптимальными защитными свойствами при действии на покрытие высоких температур определяется в значительной степени составом огнезащитной краски, количественным соотношением между компонентами и химическими процессами, протекающими при формировании пенококса. Поэтому знание основных функциональных свойств компонентов и химизма их превращений в карбонизирующиеся продукты является ключевым фактором для целенаправленного повышения эффективности огнезащитных покрытий.

А.В. Павлович, В.В. Владенков, В.Н. Изюмский, С.Л. Кильчицкая, Смоленский лакокрасочный завод